Skip to Main Content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

Systematic Reviews

A guide directing researchers on the systematic review process. Layout based on Doing a Systematic Review: A Student's Guide, 2nd Edition, by Angela Boland, M. Gemma Cherry, and Rumona Dickson.

heading

Data Extraction

data extractions

Data Extraction Tables

Data extraction tables can be used to organize what information needs to be collected from the refined body of literature. This is done by noting what data from each individual study is necessary for analysis.

Boland, Cherry, & Dickson (2017, p. 97) offer examples of important information to include in these tables.

  • Authors and year of publication (this is a minimum requirement)
  • If the study has been published, where was it published?
    • Published as full-text, or just the abstract?
  • Study design: what type of study was it?
  • Where and when the study was conducted
  • Number of participants
  • Interventions and comparators (if applicable)
  • Outcomes
  • Analyses
  • Sponsorship?
  • Demographics of participants
  • Was there baseline data collected? How did it compare to data collected following the intervention?

Build the table according to information relevant to the research question. If there is information missing, it doesn't hurt to contact the researchers to ask if they can provide the missing information.

Depending on the reference management software used, some of the data extraction process can be automated. This is especially true for users of Covidence.

data extraction tools

Covidence

Covidence is a useful tool in managing references, collaborating with the research team, and also helps in data extraction. Refer below to resources on Covidence.

Note: Duquesne students, staff, and faculty get free access to all of Covidence's software. For those that are not affiliated with Duquesne, Covidence does have a free version for researchers. Some limitations apply, including a cap at 500 references and a limit to 1 systematic review per free account.

data extr

Additional Resources

This guide highlights many options that are available to Duquesne-affiliated researchers, especially Covidence. While Covidence is highly recommended for use in reference management, collaboration, and data extraction, there are additional resources available to researchers. Some of these options are listed below:

A reference management software that helps correct citations and organize a body of literature. Free to use!

Helpful in organizing research and literature in the systematic review process, Zotero is a free resource. There are collaborative options to connect with members of the research team.

Available through Brown University's Center for Evidence Synthesis in Health, Abstrackr is a platform where collaborators can organize information gathered in the literature search and also helps in screening abstracts.

Another software for researchers to use in the systematic review process. Helps with reference management and allows for collaboration. Free accounts are available as well as options for paid upgraded accounts.

DistillerSR is a fee-based service that helps in automating steps of the literature screening process (full-text retrieval, screening references, data extraction, etc.).